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A structuring effect is seen in flows of suspensions, with this effect having a large 
impact on the hydraulic properties of such flows. The numerous experiments which have sub- 
stantiated the radial migration of spherical particles were discussed in [i]. These experi- 
ments show that in a Poiseuille flow of suspensions of equal density, particles are displaced 
toward the center of the channel. In the case of the ascending motion of a fluid with rela- 
tively heavy particles and the descending motion of a fluid with relatively light particles, 
the latter tend to accumulate in the central region of the flow and form a tightly packed 
core. If the suspension of heavy particles moves downward or the suspension of light par- 
ticles moves upward, then the opposite pattern is seen: the particles accumulate near the 
walls of the channel. A similar situation exists in ascending flows of a mixture of fluids 
with small bubbles. In this case, an increase in gas content is seen in the wall region 
[2, 3]. Such structuring in vertical flows is due to the effect of an inertial buoyant force 
on the particles in the transverse direction [4]. A model which makes it possible to explain 
the existence of nonuniform concentration profiles in equidense suspensions was presented in 
[5]. It was assumed in the model that a stationary distribution of concentration is attained 
because the transverse particle flow due to buoyancy is counterbalanced by an oppositely 
directed diffusion flow. The latter flow is described by introducing a thermodynamic force 
which acts on the particles. This force is found from the condition of equality of the dif- 
fusion flow to the convective flow created by the force. In the present study, we apply 
this approach to vertical flows of suspensions of different densities in a gravitational 
field. 

We will examine a monodisperse suspension of fine spherical particles of radius a and 
density d I. The particles are placed in a fluid of density d o . For the sake of definite- 
ness, we assume that, due to the smallness of the particles, only isotropic Brownian motion 
actually contributes to diffusion. 

The following expressions [6] give the longitudinal components of the momentum conser- 
vation equation for a suspension and its disperse phase moving vertically inside a pipe in 
a gravitational field 

ap I d M(p) y + d g = O ;  (1) 

3 i d M(O) y ~M (p)u + ( t - - p ) ( d ~ - - d o ) g =  ~ o  ~ ~ ~Y ' (2) 
= 9~o/2a 2, d = do(l -- p) @ pd~. 

Here x and y are longitudinal and radial coordinates; u = v - w is phase slit velocity; v 
and w are the mean velocities of the fluid and the particles; p is pressure; ~0 is the vis- 
cosity of the pure fluid; g is acceleration due to gravity; M(p) is an increasing function 
of the volume concentration of the disperse phase p. 

Equation (2) was derived on the basis of allowance for the viscous Stokes force fs, the 
Faxon force fF, the gravitational force, and buoyancy. The expressions we use for fs and fF 
are taken from [5]: 

9 ~tOM(p)u, ]F= 3 t d [ dr] fS=~97. ,  ~9Po~-y M ( p ) y ~  �9 

For the transverse force, we use an expression obtained in [4]: 

]M = 9 4-~'U'a ao 3"6'46" [voM(p)~'dv ]1/~ u sign {~} (3) 
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(v 0 is the kinematic viscosity of the pure fluid). This force causes the particles to migrate 
in the transverse direction, thus helping to form a nonuniform concentration profile. In 
accordance with [5], the transverse component of the momentum conservation equation for the 
disperse phase can be written on the basis of the condition of equality of the force (3) to 
the thermodynamic force 

3p [a~ 1 dp /r ~ [~j~ ~ ,  (4) 

8 -- 5p 
where ~ lis the chemical potential of the particles: ~ ~--- const + kTY(p), F(p) ----- In p-- p + p p) 2' (1 
whi le  d i f f e r e n t i a t i o n  i s  per formed wi th  c o n s t a n t  p r e s s u r e  and t e m p e r a t u r e .  

Then i n t r o d u c i n g  d i m e n s i o n l e s s  v a r i a b l e s  and pa rame te r s :  

~0 v g do, ~----- g d 1 

(R i s  t h e  tube  r a d i u s ,  P = - a p / a x ) ,  Eq. (1) can be t r a n s f o r m e d  as fo l lows :  

t d [M(p)~dV] T~-~ ~ + ~ ( t - p ) +  ~p+ 1 = 0 .  (5) 

Taking i n t o  accoun t  t h e  e x p r e s s i o n  f o r  s l i p  v e l o c i t y  which fo l lows  from (2 ) ,  

u = d dV g} [~M (p)l -~, 

we represent the transverse component of the momentum conservation equation of the disperse 
phase as 

dp ~ __ -  [M (p) [ d~ ]] x/z dV 6 dl/2v o kT '  . d V  [ ~  M(p)~--~ = F {~ ~ [M(p) ~ - 1  A 4 ('l - -  p) ( ,  - -  a)), F = 6'46 a~ (PR)a/~ - -  A = s~gn [ ~ ) .  (7) 

The boundary c o n d i t i o n s  f o r  (5) and (7) fo l l ow  from c o n s i d e r a t i o n s  of  symmetry and adhes ion  
on t h e  channel  w a l l s :  

V---- Ofor ~ -  1, dV/d~ = 0 (or dp/d~ = O ) f o r  ~----- O. (8) 

We obtain yet another condition if we know either <p> (particle concentration averaged 
over the cross section) or pf (mean-flow rate concentration): 

<p>=2 p(D~d~,pj=t'p(~)V(Dgd~ V(.Dgd~ . 
o o 

With a l lowance  f o r  ( 5 ) ,  Eq. (7) t akes  t h e  form Of 

. .dFdp I dV ~/2{ 4 a t } 

(9) 

(zo) 

Thus, we have obtained system (5) and (i0) to determine the unknown functions V(~) and p($). 
As in [4], we used the approximation formula M(p) = (i - @)-s/2 

A numerical analysis of these equations was performed for two different situations. In 
the first case, we assumed that the effect of the Faxen force was negligible compared to the 
effects of gravity and bouyancy. This is valid for moderate pressure gradients. Then Eq. 
(5) remains as before, and Eq. (i0) is simplified as follows: 

dfdp ]. , ,dVI1/2 
M (O) ~ ~ = - -  r iv~ tm ~ I {~ - -  ~}  (1 - -  o )  

Figure 1 shows different regions of structuring of the particles of the suspension in the 
space of the parameters ~ and y. We used the condition (i - p)~ + p7 = 1 to find the boundary 
of the parameter regions which characterize the motion of the suspension upwards or downwards 
(this line is represented by dots). The relation (i - fl)~ + p~ < i corresponds to upward 
motion of the suspension. The analogous inequality with the opposite sign corresponds to 
downward motion of the suspension. Proceeding on the basis of the absence of viscous struc- 
turing with a trivial phase-slip velocity U, we obtain the equation (~ = ~) of the dashed 
straight line in the figure; the parameters lying on this line correspond to a uniform dis- 
tribution of particle concentration in the flow and, thus, to a strictly parabolic (Poiseuil- 
le) profile of fluid velocity. The values of e and y taken from region I Gorrespond to 
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0,153 
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0,0334 
0,196 
0,434 
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o,i 

(p) 

0,0004 
0,070 

0,4t7 
0,5963 

0,2 

P: 

0,0054 
0,127 
0,423 
0,5968 

migration of particles toward the walls of the tube. The parameters from region II describe 
migration of the particles toward the center of the flow. We constructed profiles of concen ~ 
tration p($) for the case of upward motion of the suspension. These profiles are shown in 
Fig. 2 with the condition of displacement of the particles toward the center (curve i) or 
toward the tube walls (curves 2). The solid lines represent graphs of the function p(g) at 
F = i00, while the dashed lines show the same for F = 250. In these calculations, we assumed 
that we knew the concentration of the disperse phase P0 on the channel axis (with migration 
of the particles toward the center of the flow) or near the ~ibe wall (in the opposite situa- 
tion). 

We then used Eq. (9) to determine the mean concentrations <p> and pf for different P0, 
=, y, and F. The results of these calculations are shown in Table i. 

A similar analysis was performed with the condition that the particles of the disperse 
phase are acted upon not only by gravity and buoyancy, but also by Faxen forces. This situa- 
tion prevails when there are very large pressure gradients in a suspension of a relatively 
light fluid and particles. The fluid should also have a high viscosity. Then the functions 
V(~) and p(~) will be determined from Eqs. (i0) and (5). As in the case of the absence of 
the Faxen force, we found the structure-formation regions in the space of the parameters a 
and y. These regions are shown in Fig. i. As before, in the present situation, the dotted 
line is the line separating the parameter regions corresponding to upward or downward motion 
of the suspension. Line a was found from the condition of equality of phase-slip velocity 
to zero. For example, the coordinates of points lying below this line and above the dotted 
line characterize migration of the particles toward the channel walls. It is evident from 
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Fig. 5 

Fig. 1 that with upward motion of the suspension in the given situation, the particles always 
tend to move toward the center of the channel - regardless of the ratio of the densities of 
the fluid and the disperse phase. This can be attributed to the fact that the Faxen force 
causes the particles to always lag behind the fluid. As a result, the transverse force is 
directed toward the center of the flow. The profiles of p(~) in Fig. 3 were constructed for 
this case with F = 100. Here, the solid line pertains to ~ = 0.1 and y = 0.2, while the 
dashed line pertains to ~ = y = 0. This corresponds to the flow of an equidense suspension 
in the absence of a gravitational field. The profile in the figure coincides with the anal- 
ogous profile from [5]. 

Since a change in the transverse coordinate ~ is accompanied by a change in the concen- 
tration of the disperse phase p(~) for certain parameters a and y, as the suspension moves 
downstram the absolute value of the Faxen force may become greater or less than the buoyant 
force minus the gravitational force. Thus, there is a change in the sign of phase-slip 
velocity U. This in turn leads to a change in the direction of the force (3). The profiles 
of concentration and velocity that develop in such a flow are shown in Figs. 4 and 5 (the 
solid lines correspond to r = I00, while the dashed lines correspond to r = 250). The param- 
eters ~ and 7 for this flow lie within the hatched region in Fig. I. 

As above, in using (9), we made up a table (Table 2) of values of concentration <p> and 
pf. The calculations performed with ~ = y = 0 and F = 100 agree with the results reported in 
[4]. 

Thus, an explanation has been given for different types of structure-formation processes 
in vertical flows of Brownian suspensions in a gravitational field. It is apparent from the 
concentration profiles shown in Figs. 2-4 that such structuring is manifested to a greater 
degree with an increase in particle radius. This in turn causes the flow to begin to display 
pseudoplastic properties. Figure 5 describes experimental data which indicates that there 
is some smoothing of the velocity profiles and that the latter deviate from the Poiseuille 
profile in the presence of a nonuniform distribution of disperse-phase concentration. 
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